Yizhou Tan 1,2Ying Gu 1,2,*
Author Affiliations
Abstract
1 Chinese PLA General Hospital, the First Medical Center, Department of Laser Medicine, Beijing, China
2 Hainan Hospital, Chinese PLA General Hospital, Laser Medicine Center, Sanya, China
A phase-only method is proposed to transform an optical vortex field into desired spiral diffraction–interference patterns. Double-ring phase apertures are designed to produce a concentric high-order vortex beam and a zeroth-order vortex beam, and the diffracted intensity ratio of two beams is adjustable between 0 and 1. The coherent superposition of the two diffracted beams generates a brighter Airy spot (or Poisson spot) in the middle of the spiral pattern, where the singularity for typical vortex beam is located. Experiments employing circular, triangular, and rectangular phase apertures with topological charges from 3 to 16 demonstrate a stable, compact, and flexible apparatus for vortex beam conversion. By adjusting the parameters of the phase aperture, the proposed method can realize the optical Gaussian tweezer function and the optical vortex tweezer function simultaneously along the same axis or switch the experimental setup between the two functions. It also has potential applications in light communication through turbulent air by transmitting an orbital angular momentum-coded signal with a concentric beacon laser.
finite aperture diffraction phase-only beam transformation orbital angular momentum common-path interferometry optical manipulation light transmission through turbulent air 
Advanced Photonics Nexus
2023, 2(3): 036008
Author Affiliations
Abstract
1 Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, P. R. China
2 Department of Laser Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, P. R. China
3 Medical School of Chinese PLA, Beijing 100853, P. R. China
4 Precision Laser Medical Diagnosis and Treatment Innovation Unit, Chinese Academy of Medical Sciences, Beijing 100000, P. R. China
Photobiomodulation (PBM) promoting wound healing has been demonstrated by many studies. Currently, 630 nm and 810 nm light-emitting diodes (LEDs), as light sources, are frequently used in the treatment of diabetic foot ulcers (DFUs) in clinics. However, the dose–effect relationship of LED-mediated PBM is not fully understood. Furthermore, among the 630 nm and 810 nm LEDs, which one gets a better effect on accelerating the wound healing of diabetic ulcers is not clear. The aim of this study is to evaluate and compare the effects of 630 nm and 810 nm LED-mediated PBM in wound healing both in vitro and in vivo. Our results showed that both 630 nm and 810 nm LED irradiation significantly promoted the proliferation of mouse fibroblast cells (L929) at different light irradiances (1, 5, and 10mW/cm2. The cell proliferation rate increased with the extension of irradiation time (100, 200, and 500 s), but it decreased when the irradiation time was over 500 s. Both 630 nm and 810 nm LED irradiation (5mW/cm2 significantly improved the migration capability of L929 cells. No difference between 630 nm and 810 nm LED-mediated PBM in promoting cell proliferation and migration was detected. In vivo results presented that both 630 nm and 810 nm LED irradiation promoted the wound healing and the expression of the vascular endothelial growth factor (VEGF) and transforming growth factor (TGF) in the wounded skin of type 2 diabetic mice. Overall, these results suggested that LED-mediated PBM promotes wound healing of diabetic mice through promoting fibroblast cell proliferation, migration, and the expression of growth factors in the wounded skin. LEDs (630 nm and 810 nm) have a similar outcome in promoting wound healing of type 2 diabetic mice.
Photobiomodulation (PBM) light-emitting diode (LED) wound healing diabetic ulcers. 
Journal of Innovative Optical Health Sciences
2022, 15(2): 2250010
Author Affiliations
Abstract
We investigate the ultrafast nonlinear phenomena of picosecond chirped non-ideal hyperbolic secant pulse evolution in silicon photonic nanowire waveguides with sum frequency generation cross-correlation frequency-resolved optical gating and nonlinear Schr?dinger equation modeling. Pulse broadening and spectral blue shifts are observed experimentally, and they show remarkable agreements with numerical predictions. Nonlinear losses dominate the pulse broadening and limit the spectral bandwidth broadening induced by self-phase modulation. The initial chirp results in noticeable bandwidth compression and aggravation of blue shifts in the presence of nonlinear losses, whereas it plays a negligible role in the output pulse temporal intensity distribution.
190.7110 Ultrafast nonlinear optics 320.5390 Picosecond phenomena 320.1590 Chirping 
Chinese Optics Letters
2014, 12(s1): S11905

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!